Endpoint estimate of rough maximal singular integral operator

Abstract: Study of singular integral operators was initiated by Calderón and Zygmund in 1950's, which continues to be the central theme of research in Fourier analysis.

For $\Omega : \mathbb{S}^{d-1} \to \mathbb{C}$ define

$$T_{\Omega}f(x) = p.v. \int_{\mathbb{R}^n} f(x-y)\Omega(\frac{y}{|y|})|y|^{-d}dy.$$

If Ω satisfies some "smoothness" condition then T_{Ω} belongs to the well understood class of Calderón-Zygmund operators. T_{Ω} is said to be rough singular integral operator if there is no "smoothness" in Ω . For $\Omega \in L \log L(\mathbb{S}^{d-1})$ with zero average, Calderón and Zygmund proved the L^p boundedness of T_{Ω} for 1 . The end point <math>p = 1 was more elusive and remained opened for almost 30 years. For dimension 2, Christ and Hofmann (independently) proved that $T_{\Omega} : L^1 \to L^{1,\infty}$ for slightly stronger hypothesis $\Omega \in L^q(\mathbb{S}^{d-1}), q > 1$. Later Christ and Rubio de Francia proved this result for $\Omega \in$ $L \log L(\mathbb{S}^{d-1})$ again for d = 2. Finally, Seeger in 1996 settled this for all dimensions and $\Omega \in L \log L(\mathbb{S}^{d-1})$. To study the pointwise existence of $T_{\Omega}f$ one considers the following maximal operator,

$$T_{\Omega}^*f(x) = \sup_{\epsilon > 0} \left| \int_{|y| > \epsilon} f(x - y) \Omega(\frac{y}{|y|}) |y|^{-d} dy \right|.$$

Duoandikoetxea and Rubio de Francia proved that $||T_{\Omega}^*f||_p \lesssim ||f||_p$, 1 . After $Seeger's result in 1996 it is an open problem to show <math>T_{\Omega}^* : L^1 \to L^{1,\infty}$. In this talk we will discuss about the best known result for boundedness of T_{Ω}^* near L^1 .

This is a joint work with Ankit Bhojak.